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. being simply the number of null constraints, bu:t all antenna
weights need to be pe-turbed. The minimax method is much more expensive, since all
antenna weights are parameters, but often only a small number of weights need to be
changed. Both approaches are fairly robust. The least squares approach apparently
permits polygonal arravs to be adopted, and probably mcre general geometries and
configurations of failed elements might be adopted. The minimax approach is based
on a very general optimisation algorithm and therefore in principle permits rather
wide ranging specifications of constraints to be imposed by the user.

Both approaches are still under development; the theory is incomplete and algorithms
have not been fully tested.
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1. INTRODUCTLON J

The positioning of nulls in an antenna array field pattern is essential %o
the performance of the antenna, in being capable of blocking interference.
The null placement must be achieved in such a way that the field pattern
in other directions is not adversely affected.

One of the most efficiznt methods of null placemernt is by perturbing only
the phases of the array elements. Herey—-we presentj&wo aporoaches to the
placement of nulls by phase perturbation. The first is a least sguares
method based on exact or approximate null placement, applicable to one-
dimensional arrays and extendable to two-dimensional arrays, developed for
real quiescent patterns wnhich apparently allows polygonal arrays (in this
study, octagonal arrays) to be considered. The second is a minimax method
in one or two dimensions based on null placement, which readily vermits
the cmiscion of failed elements ard which 1nvolves onl/ the Derturbatlon
of selected element phases or amplitudes, <’,u 14

Ju ‘ - . -

o i

We believe that tnhese two app-oaches can provide between them a versatile
choice., The least squares method is extremely efficient, the number of
parameters being simply the number of null constraiats, Sut ail antenna
weights need to be perturbed. The minimax method i3 much more expensive,
since all antenna weights are parameters, but often only a small rnumber of
weights need to be changed. Both approaches are fairly robust. The least
squares approach apparently permits polygonal arrays to be adopted, and
probably more general geometries and configurations of failed elements
might be adopted. Tne minimax approach is based on a very general
optimisation algorithm and therefore in principle permits rather wide
ranging specifications of constraints to be imposed by the user.

Both approaches are still under develooment; the theory is incomplete and
algorithms have not been fully tested. In particular no a priori
guarantee can be given that the least squares technique will work for any
given polygonal array, and at present it cannot be guaranteed that the
minimax algorithm will always converge or that it will lead to a minimal
number of phase changes. Since the current AFOSR research grant is not to
continue for a second year, as originally planned, it will not be possible
to complete this work under AFOSR support ‘during the coming year.
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2. PHASE-ONLY NULLING BY LEAST SQUARES MFTHODS IN ONE DIMENSION

We consider a linear array of N isotropic elements as shown in figure 1.

The field pattern is given by,

. . : th ;
The weight a, is the complex excitation of the n element. The phase
reference is taken to be the centre of the array, hence the weights <

are given by,

dn = (N-1) =(n-1) = -dN—n+1' n=1,..N
and
u = 2nd sing,
X
where A = wavelength,
) d = interelement spacing,

<D
"

angle subtended with the normal to the arrzay.

The interelement spacing is taken to be half the wavelength throughout.

]
d
-
L : !
N N-f  N-2 T3 2 ]

Figure 1 Geometry of the Array.
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We require a set, ¢n’ n=i,..N of phase perturbations which impose nulls in
required locations whilst retaining the characteristics of the quiescent
pattern. Let uk, k=1,..K, be tne directions in which nulls are required,
then to obtain ¢n' n=1..N, we minimize the integral of the sguare of %h

discrepancy between the percurbed pattern and the original pattern, which

is readily shown to egual

N
F=Jcal(e 7 -1)2, (2.1)

(cn are assumed to be real and positive). To impose the nulls in the
required locations the phase perturbations must satisfy the following

constraints,

(2.2)

The problem is nonlinear in general and cannot be solved analytiecally, but

numerical solutions can be obtained using nonlinear programming.

We consider the case when the quiescent pattern is real, and hence the

element weights are conjugate symmetric,
= a* = .
aN—n*1 an, n=1,..N;

in this case it can be shown (Shore [1984a]) that the required phase

perturbations are odd-symmetrin,

Oyopsy =~ O (2-3)

o Al s . e ol . o om . ealhan B emm. - a
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Writing the coefficients in the form
-‘dnus

a = ENE

then due to the odd symmetry of the pertubations ¢q, and the coefficients

dq, n=1,..N, the constraints given in equation (2.2) can te written,

N
C, =ni:lanICOSt®n sa (o = a)), k=l X
(2.4)
The objective function can be rewritten in the form,
N
F = Zﬁcn|an[2(1—cosmn). (2.5)
n=1
Given the objective functicn 7, equaticn (2.5) and the constraints,
equation (2.4), we define the Lagrangian L as follows,
K
L=F-JaxcC (2.6)

where the coefficients Ak, k=1,..X are (real) Lagrangian multipliers. A

necaszary condition for the perturbations ¢n to locally minimize F subject
to the constraints Ck=0, is that the partial derivatives of L with raspect
to the ¢n be zero. Hence a necessary condition for there to be a minimum

is that

K
3F - A 3C =0, n=l,..N. (2.7)
¥, k=1 3

Differentiating F and Ck with respect to ¢p’ say, gives,

aF . ZCplapl2 sing p=1,..x (2.8}

rpl
3¢p

and
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Cx - —{aplsin[¢p - dp(uk - ug)] (2.9)
3¢p
p=1,..N,
k=1,..K.
Substituting equations (2.8) and (2.9) int~ {(2.7) gives,
K
n 2 . - - 5, e -
2,p|ap| sine, = L Aklapla‘“me + ag (uymag)l
k=1
A little algebraic manipulation gives @D in the form
K
tan ¢ = -k£1xksin;dp(uk-us)] (2.10)
K
2e la, ] + ks‘ he2osld, (up-ug)l
=1

Comparing this form for the phase perturbations ¢p witn that given by
Shore [1983], it is clear that the coefficients which Shore refers to as
the 'beam coefficients' are, in this case, the negative Lagrangian
multipliers. (In Shore because of the slightly different form given for
the ¢n’ n=1,..N, the ccefficient: are actuall, tne negative Lagrangian
multipliers divided by two.) This is the case only when the pattern is

real, and hence we can take advantage of the symmetry in the cocefficients

ensuring the constraints are real.

The unknowns in the minimization problem are Ak, k=1,..K , the problem
size is dependent upon the number of constraints K, rather than the number
of array elements N. This is clearly advantageous as the numhe- of

elements is generally much larger than the number of constraints required.

- ket M . ..A*_‘k S SN Py . ey .
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At present the problem is solveda by using a NAG routine (Z04YDF) wnich
employs a sequential quadratic programming algorithm (3QP) (see G:ill,
Murray and Wright [1981]). The routine requires an ini<ial estimaze f:ir
the solution and routines to evaluate the objective function, constraints

and their derivatives with respect %0 the coefficients.

The resul%s given in table 1 are for a problem in which there are =°

antenna elements, cn = ]3 l =1, n=1..N, and the quiescent{ beam direct.cn

ug = 0. The null is located at ek =0.43€33 (rads) and the tolerence

levels required by the routine were set to 1e-10. This example s taxen
from Shore [1983], and as stated previously the 'beam coefficients' in

the formulation presented here are twice those of Shore and opposite In

sign, but the resulting weight perturbations are the same.

2.1 Linearization

If the phase perturbations are assumed small, then we can employ the

following approximations,

tan(¢} = ¢,
and 3
i,

e = 1 + ié .
u#)n

i .
The weight perturbations w_ = a (e ®1 -1) can then be approximated by
n n

3

w. = ia (2.11)

n¢n
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This form for the welzhts allows us O rewrite tohe cancellation patliern,

in terms of the new coefficients, as tne sum of tvo beams

K N ‘ . . .
ap(u) =% 1 Ay L 1 [ia (amf2u~u, D) °¢dn(d-uk)1 (2.12)
k -

= n=1 C;ll_ -
where,
1 K
ch =2¢c, - — ) \ACOSEdn(Jk'JS)J
]anl K=

(%]
3
o
®
2
{n
S‘T
®

One beam is in the direction of the required null, which car
original pattern, and the seccnd is in the symmetriczl locztion with
respect to the main beam; which leads to an enhancement of the pattern at

this point. Pattern enhancement occurs in the exarple described atove and

-

is illustrated in figure 2, tne null at u, = 0.43633 (rads) is reflected

by pattern enhancement at u

-0.43633 (racs).

It should be noted that if we can make the agproximations for ¢n and the
weights as shown above, and if the coefficients i, are small relative to
2, with ¢ = |a,] = 1, then by neglecting any contributions from other
cancellation beams at u=u,, we C2n obtain an estimate for the coefficients
as follows; the cancellation pattern can be approximated by

oy = - B, k=1,

K

==

and since by definition we have
then the coefficients can be approximated by

A = u_go(uk). (2.13)

T POUIIDRS——
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Table 22 shows the results when nuils are placed at § = 0.59%%6, 0.63557%,
0.71887 (rad), tne approximate ccefficients in this case are -0.126l6,
0.11923, and -0.11349 respectively, wnich are clearly of the same order as
Lhe calculatad values. However, tzble 2b illustrates the effect of
imposing beams c¢lose together. As locations of nulls apprc ch each other
they have a greater influence on each other and the coefficients are no

longer objectively independent. This is also true when imposing

additional nulls close to locaticns symmerrical £o tne original nulls.

2.2. Symmetrical Nulls

¢ 1s not possible to synthesize nulls at symmetrical locations using the
linearized form and approximation to the weights. (A proof is included in
appendix 1 for completeness). Wwhen placing symmetrical nulls no
assumption can be made about the size of the phase perturbations. Shore
(1984b] considers the problem of symmetrical nulls, and concludes that it
is always possible to achieve symmetrical nulls in a linear array pattern,
but it may result in interference patterns. We expand these ideas here

and show that in some cases it is not possible to place symmetrical nulls

using this method.

If we consider the constraints and the ¢, for symmetrical null locations

u, = tu*, assuming ug = 0, we have from equations (2.4) and (2.10);

C<|=
n

cos(¢n + dnu*) =0,
1

e~z




(2.14)
N
Co = ! cos{e, - dyu*) =0,
n=1
and
H * A=A
sin(d ju*)(A;-15) (2.15)

tang, = .
n : .
2c Ja,| + cosldju*)(A;+iy)

Using equations (2.14) and (2.15) we would like to find the ecsnditions
which specify whether there are an iafinits number c¢f solutions, no
solutions or a unique solution. Shore [188i4b} states tha%, provided that
the phase perturbations are not resfricted to be small, nulls can be
imposed at lccations symmetrical about the main team; this is not always
the case and can easily be proven. Taking the case when ¢, = |a | = 1

with 8 = w/6 (rads), u* = 7wsin8 = w/2. From equation (2.15) we have

s = tan"! sin(dqn/Z)(xi-_xz)_:\ n=1,..N. (2.16)
o = LA

2+ cos(dn/Z)(X1+A2)

Wnen d is even, sin (d,7/2) = 0, and therefore ¢, = tm, t is an integer;

when d, is cdd, cos(dnw/2) = 0, and therefore ¢, = tan~! (A4722) /2,

The terms in the summation of the cons:raints given by equation (2.15)
are:
(i) for even dp> cos(¢ntdnw/2) = cos(gym) = £ 1,
(ii) for odd d,, cos(¢ntdnn/2) = cos{Ttn/2),

where T = tan"(x1-k2)/2. The summation of the terms results in the pair

of equations

At e . S, PO
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N-1oeos(T=l) « % =2 ,
2 Z

where k is a non-zero integer. This leads to the equations,

sinT = + ,

wnich indicates that the consitraints are two parallel lines and thus cin
never both be satisfied. In this czse there is no solutilon to the

“~ is assumed that (N-1)/2 is

o

constrained minimization problem. (Here

odd, however the resul% is of the same form {f (N-1)/2 is even).

In general there is a solution to the constrained minimization problem and
the amount of interference which occurs is dependent on the positicn of
the null relative to a null in the quiescent pattern. Figure 3
illustrates this relationship by placing nulls at intervals between

quiescent nulls of a 471 element array.

There appears to be a relationship between the optimal coefficients and

the unperturbed pattern value buf we have been unable to establish that

relationship at present.

2.3. Increasing null width by Higher Order Constraints

Since the placing of nulls at locztions close together results in
cancellation beams interference, as illustrated in the previous section,
it may prove wise to employ alternztive methods for increasing the width

of a null.

Consider the constraints

v

(u,) =0, k=1,..K (2.17)
du ’

Pa
v v=0,..M
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w“here 4 denotes the L2eciticn 7 tnr K interfarenge girectisns.

Previously we have considered y=J, however, by inciuding hlgner crzar
derivatives, the null width is broadened. This was illustrated for null
synthesis with phase end amplitude perturbations by Steyskal [19821.

Here, we investigate the use ¢ higher order constraints in the context of

phase-only nulling.

ints is P=K{(M+1), and they are

w

Clearly now the total number <7 constr

given by
N
Cy = ) 1(dn)v Ianf cesls, + dy (ug-ug)] (2.18)
n=
for even v,
and
N
Cy= L (Y [ag] sin Loy = dy (umug)] (2.19)
n=1

for ¢dd wv.

The Lagrangian is now of the f:orm
P

L=F~- § AoCh o
p=1

and again the condition for d minimum is

P
3F _ 7 i, 35 .0 (2.20)
3¢, Pp=1 v, -

From equations (2.18) and (2.19) tne derivative of the constraints are

given by:-
. - lag] (40 sin Loy + d (umug)] (2.21)
3,
for even v,
and
3¢ . fa,[(d)Y cos [y + dp(umug)] (2.22)
o

for odd wv.

From equations (2.9), (2.20), (2.21) and (2.22) we have

K M
2c apfsiney = - T N (d)V sin [o, *+ dpCuemug)]
k=1 v=0
step 2
K M
;21 21 Mey(dy)V cos [op+dp (umug) ],
= V=

[
.. - ttman NPT D S G S _
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where kv = (x=1)(M+1)+{y+1). Af%er a2 little algeDrais manipu.atiin we

obtain,
K M - y
- L N eVsing (up-u) + T L My (dp) Yeosay (4~ag)
k=1 v=0,2.. k=1 v=1,3..
step 2 step 2
tan ¢, =
K M é byl
{ ) { < Vo G -
2epfagl + 1T I a(d)Veosa fumug) -~ 1 ] Ay, (200 Ysind, (0, ~ug)
k=1 v=0,2.. k=1 vy=1,32..

(2.23)

If v =0 then (2.23) reduces to equation (2.7).

The problem can be solved in the same manner as previously except now
there are K{M+1) variables instead of K. The method us=d £2 solve the
conscrained minimization problem requires derivatives ¢f both the
objective function and the constraints, the eguations for these are given

in appendix II.

2.3.1 Numerical Results

The effect of including higher order constraints is illustrated in figures
4, the corresponding coefficients are given in table 3. Figure U(a)
illustrates the quiescent pattern, with 31 elements and uS=O and

ap=t n=1,...N. Figure 4(b) illustrates the pattern with a zero order null
located at uk=0.3, the null is indicated by the vertical line. Figure
4(c) and (d) illustrate clearly how the null is broadened by the addition
of higher order nulls, with a first order and second order null
1llustrated respectively. T 1s evident from the coefficients in Table 3
that in this example the original beanm coefficient does not vary greatly
with the addition of higher order consiraints. However the whole pattern
is affected by the higher order constraint, resulting in some amount of

pattern enhancement on the half range symmetrical to the null location.
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3. PHASE ONLY NULLING BY LEAST SQUARES METHODS IN TWO DIMENSIONS

3.1 Notation

For a two-dimensicnal planar array the phase equation is of the form,

_2n 2n
By, = = dy WXy u v = dy Wyg v (3.1
A by
k=1..NX, 1=1,..Ny,
and the resulting field pattern is given by
Nx Ny y
i
p=21 0 agpe’ ™" (3.2)
n=1 m=1
Here
Nx = number of elements in the x-direction
Ny = number of elements in the y-direction
WX = k-(nx+1)/2, k=1,..N,
wYq = 1—(Ny+1)/2, 2=1,..Ny
k,2 or m,n = the reference coordinates in the x,y plane
dx'dy = element spacing in the x,y directions respectively
an m = complex excitation of the n,mth element
’
u,v = positions in the coordinate system shown below.

and u = sin Y cos ¢, v = sin ¢ sin ¢,

where the angles ¢y and ¢ are as illustrated in figure 5.




y are half wavelength.

exhibit a symmetry about the centre element of

P(Up, V) = 0 k=1,..K (3.3)

must be conjugate symmetric about the

—

| e

:

!

{ We assume that the element spacings dx and d

4 We also assume that the quiescent pattern is real, and in that case

f the coefficients an,m

i the array. We shall return to this point later.

}

i

| 3.2 A Two-Dimensional Planar Array

t We require a phase change in the element coefficients which will
result in the placement of a null in a given direction whilst

) replicating the remaining field pattern.

?
Given a set of points {Uk,Vk} k=1,..K at which nulls are to be
placed, then we require

b

)
Let us consider the geometry of the array. If, given a grid of
elements, the main beam is assumed to be central to the array, (that

L is the weights WX and WY, are as defined above), then the phase

i equation at each element is as illustrated in figure 6. (The example

; here is for a 5x5 grid, but clearly the basic pattern is the same for
a general grid).
If the elements are numbered in the order illustrated in figure 6, it
can easily be shown that in order for the fleld pattern to be rea:,
the complex coefficients 3m,n
central element (in this case element number 13).

|

] Ordering the coefficients in this manner, as a vector, we have

r

agn? a(j) j=mln=-1) +m (3.4)

j=1,..N

N = Ny x Ny'
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We can now consider the field pattern, given in (3.2) in a vector

form,

£3.5)

and in etfect we now have a one-dimensional problem.

If the unknown phase perturbations required to place a null (or set
of nulls) is denoted by {¢j} j=1,..N, then from equation (3.3}, we

have the null constraints,

=

ip; i8
e ®J e K 2 x=1,..K

(]

(3.6)

[
(]
—

To ensure that the perturbed pattern replicates the quiescent pattern
everywhere but at the null location, we minimize the sum of squares

of the absolute element perturbations

N
iw,
F = z Cj laJ(e ~

J=1

Nk (3.7)

where ¢

j j=1,..N are positive weights.

Owing to the conjugate symmetry of the coefficients, this can be

written in the form,

2

o]
[
n
o~ 3

c; |aj| (1-cose;). (5.8)

The null constraints given in (3.6) can also be re-written as




i6 19,
K
=1
=) Iajl cos [®j + BKJ kK=1,..K (3.9)
J=1
As in the cvne-dimensional problem, we form the Lagrangiaii
K
L=F-7] 1, C (3.10)

and the problem has a 'beam space' solution just as for the one-
dimensional problem. From (3.8), (3.3) and (3.10) we can obtain the

relationship

- 1 Ay sin [dp(U-Ug))
k=1
tan (¢p) = (3.11)

2 cylagl + 1 A, cos [d

K

(U -Ug)]

b~ )

|%

Details of the algebra behind this relationship are as discussed in
82.

At this stage it is a simple matter to show that all the results for

the one-dimensional case hold in two dimensions.

Clearly the number of variables in the optimization problem, namely
that of minimizing (3.8) whilst satisfying the constraints given in
(3.9), is reduced from the number of elements Ny xN, to the number of

y
constraints K, by utilicing (3.11).
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Just as for the one-dimensional array, in some cases there is an
enhancement of the pattern in a direction symmetric to the location
of the null. Examples of this phenomenon will be illustrated in the

numerical results given below.

2.3 Polygonal arrays

Billam (1985) poses the question of the suitability of phase only

nulling for an octagonal array of elements,

It is possible to embed an octagonal array of elements in a
rectangular grid; as shown in figure 7. All the elements of the
rectangular array which lie outside the octagon are clearly in
symmetric positions about the central element. By putting the
initial weights of these elements to zero and ensuring that they are
eliminated from further calculations, it is possible to simulate the

problem of null placement in an octagonal antenna field pattern.

This method of embedding can in principle be extended to any

polygonal geometry of array.

We have developed computer routines for the embedding of an octagonal
array into a rectangular array, and the placement of nulls by phase

perturbations to the octagonal array elements.

A listing of the embedding routine, which embeds the octagonal array
into a suitable rectangle by setting the appropriate weights to zero,
can be found in appendix III; it is quite self-explanatory. In the
section on numerical results below, we illustrate the difference in
the quiescent field for the octagonal and the rectangular arrays,
show how single and multiple nulls can be achieved for each, and the

effect on other areas of the pattern.
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3.4 Numerical Results

For the following results, the optimization routine used to solve the
constrained minimization problem was taken from the Harwell library
of optimization routines (VF13). The method is based on a quadratic
programming technique and is described in Powell (1982) and
Chamberlain et al. (1982). Linear approximations are made to the
non-linear constraints, and hence the placement of nulls at symmetric

locations would not be posible using the routine. {S2¢ 32.2 above).

The routine requires the evaluation of the objective function and

constraints, plus their first derivatives.

The examples below illustrate single and multiple null placement for
a rectangular antenna array and an octagonal antenna array. Figures
8(a) and 8(b) illustrate the quiescent sinc pattern for both the
rectangular array and the octagonal array respectively with a grid of
13x13 elements. The octagonal array, which is embedded into the
13x13 grid of elements, has 5 elements along each face, and clearly

the resulting pattern is more circular in shape.

For each case we have placed a null at u = 0.28, v = 0.32, with a
tolerence of 10_8 allowed on the constraint, and an initial estimate
of the beam space coefficient taken as 0.1. Figures 9 and 10
illustrate the resulting perturbed patterns and the difference
between the perturbed and the quiescent pattern for a rectangular
array and an octagonal array respectively. The coefficients for the
perturbed pattern are given in each case in tables 4 and 5,
respectively, (only the first half of the coefficients need be given,
owing to symmetry). It is clear from these tables that a null placed
in the octagonal pattern results in a larger absolute beam
coefficient, and this in turn results in a higher average

perturbation but leads to a deeper null.

On inspecting the graphical results, it is clear from the difference
patterns (i.e. the differences between perturbed and quiescent

patterns) that the octagonal pattern is affected siightly more




N

The least-squares method applied to both rectangular and octagonal
array phase-only nulling problems has always given good results in

the cases considered so far.
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4, NULL PLACEMENT BY MINIMAX METHODS
Given an initial far field pattern
N
- id.u
Polu) = ; aj e n (4.1)
n=1
the perturbed pattern becomes
N
id u
p(u) = 1 x, e " ‘h.2)
n=1
Denoting the discrepancy by e(u) then
N
_ - id_u
e(u) = R{u) + il(u) = | (ap~xyle 1 (4.3)

a .

For amplitude-only perturbation Xn/an is real (and so is an), and for

phase only perturbations

where en is a real parameter.

4,1 Amplitude-only Nulling

Although expensive to implement, null piacement is possible by very

few perturbations to real weights. Adopting a minimax criterion, we

require to find the parameters x_ (n=1,...,N) which minimise |e]=,

n
where
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1
fef= = max |e(u)| K
-1 € u s
- max (R2(u) + I%(u))%
-1 ¢ u £

subject to the constraints
-e s {Re |p(W)] , [mjp(w |} s ¢

for u = Uy i=1,...,p

(where u; are discrete locations at which "near-null"™ placements are

to be made).
The expression (4.4) is nonlinear in the unknown parameters x,, but

may be linearized, with a relative loss in accuracy of at most /2 by

being replaced by

Ie“§ = max [max{ [R(wW |, II(u)l}]

|
A
=
in
—_

[See Barrodale, Delves and Mason (1978)]

The problem is now an overdetermined linear programming problem and
can be solved by a standard routine such as that of Roberts and
Barrodale (1980).

Figures 13 to 15 show 3 model 41 element quiescent patterns, based on
Sinc, 20 dB Taylor weighted and 30 dB Taylor weighted patterns,

respectively.

In Figures 16 and 17 we have given examples of null placement for the
41 element sinc pattern. Note that the weights are symmetric, thus
reducing the dimensions of the problem by half. Also, because the
perturbations are amplitude only, the pattern is symmetric about

boresight. In Figure 16, to achieve a null interval [.7, .73], only
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5 pairs ol weights are changed “rom their quiescent values 7 ., In

ies
Figure 17 to achieve a null interval _.0v, .08] Just 2 pairs of

weights are changed from unity.
The technique described here (for zamplitude-onlv changes) ras alreadgy

been discussed with different numerical #Xamples, by Mason, Wilde and

Opfer (1987).

4.2 Phase-only Perturbations

For phase only perturbations, the constrained pattern Is

N
73 S0 ’ =
T eudnu ) (4.9)
n=1
and
N N
- id u © id, u+3
o = - n n
E(u) L oap e i n
n=1 n=1
N
_ 5 idqu _ 1dnu+8n
Loa, (e o )
n=1
= R(u) + iI(u)
where

N

R(u) = 7 in [cos(dnu) - cos(dnu + en)J {u.%)
n=1
N

I(u) = ¥ a, [sin(dnu) - sin(dnu + en)] (b.7)
n=1
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Here we minimise
lel* = max ‘max(|R(2)], |T]))
-1 < Uy < Uy
Up 2 Uy = (4.8)

for a discrete set of u, {(i=1,...m) covering the range cof

minimisation, subject tO the constraints

- £ < R(u) c

WA
n

————

ub[ua,ub]
- ¢ < I(u)

[Ta
m

for a discrete set of u. i=m,m+1m,...,m+p covering the range of

nulls.
)
? The minimization is achieved by imposing inequalities
4
-z SR 3. (4.9)
-z 5 I(u;) 5 2 ;

bty

and minimising z (in place of [e[*).

’ The inequalities (4.9) give

N )
|
-z ] a, (cos(d, u;) - cos(dy u; + 8.)) <z :

n=1
\

and i (4.10)

N |
-z 5] a (sin(dn u;) - sin(d u; + 8.)) 5 z l
n=1 )

which become:




v

gy

(o)l

Nl Y

3, cosld, ug) = o A, cos(d, uy + 3,) * z
n=1 n=1
N N
-
N > ~ -~ =
L 3, cos(d, u;) 2 a, cosld, u: + 3.) z
1
n=1 n=1 ’
4011
N
S a, sin(d, u;) €Y a_ sin(d, u; « 2.) *+ z
~ Fn n *i’ = ¢ “n n “n
n=1 n=1 )

r~1 Z

~
1
[}

a sin(dn u;) 2

Hence the problem has 2p+d4m nonlinear constraints, N+1 variables
(en(n=1,...N),z) and a linear objective function z. For its solution
we have used the NAG sequential gquadratic programming routine EQUVDF,

as discussed in 82 above.

We have tackled a wide variety of problems, some of which are shown
in Figures 18-22. The tables 8~11 give numerical information which

corresponds, respectively, to these 5 figures.

For a symmetrically weighted array, if we limit the phase changes to
[-n,n] then this results in conjugate symmetric perturbations as in
the least squares approach. However, it is interesting to note that
on restricting the phase perturbation to [0,2n], we produce a sub-
optimal solution but by the nature of the optimization procedure, few
of the elements undergo changes. This is illustrated clearly in
Figures 21-22, for nulls .2z, .24, .26, .28; nhere conjugate symmetric
results are obtained in Fig 21 but all weights are changed, while

non-symmetric results are obtained in Fig 22 with just 10 changes to
<

the 41 weights.




syt

4,3 Loss of elements

The loss of elements in the array can readily be counteracted by

applying phase changes to the remaining weights so as to approximate
the original perturbed pattern, In the algorithms of #34,1, 4,2, we
simply set the falled elements to zero and minimize with respect to

the remaining elements.

This technique is i{llustrated successfully in Figures 23-26. In
Figure 23(a) is shown a perturbed pattern with no failed element,
obtained from a 20 dB Taylor weighted pattern, to achieve nulls in
0.7, 0.72]. 1In Figures 23(b) - 23(d), one, two and three elements
have failed and the resulting pattern is successfully adjusted by the

minimax algorithm.

4,4 Two-Dimensional Arrays

The techniques of 884.2, 4.3 are equally applicable to two-
dimensional arrays. However, the minimization problems can become
rather large in that case, and so more efficient but algebraically
complicated techniques such as that of Streit (1985) should probably

be adopted for processing the linear inequalities.
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5. SUMMARY OF PROGRESS
The proposed program of work for the 2-year contract was as follows:

(i) To test a constrained least squares method for adapting a planar
phased array to known interference directions

(ii) To test a constrained minimax method analogous to (1)

{iii) To develop and test new algorithms for improving (i), (ii), based on
novel research ideas.

(iv) To extend the method of Thompson (1976) and other related methods for
designing adaptive planar arrays and to develop sound nonlinear
optimization techniques for the necessary minimization procedures.

Substantial progress was made in the first year of the contract on tasks
(i), (ii) and (iii) as follows:

A modified version, based on Lagrange multipliers, of Shore's beam space
representation method for least squares phased array adaptation was
introduced. In this implementation the Lagrange multipliers were in fact
the beam space coefficients. The method was extended to planar arrays,
and also successfully applied to octagonal arrays. In addition multiple
nulls were shown to be readily introduced, and formulae for corresponding
Lagrange multipliers obtained. Symmetry was considered, and problems of
pattern enhancement at positions symmetrical to nulls were studied; it was
shown that it is sometimes not possible to place symmetrical nulls in beam
space-type algorithms.

We also reported on work carried out without AFOSR financial support on
minimax methods for null placement in antenna patterns. We noted that
algorithms, analogous to those of Mason, Wilde and Opfer (1987) for
amplitude-only nulling, could be applied to the phase-only nulling
problem. If phase changes were restricted to ranges [-w,m] then the odd
symmetry of the problem was adhered to. If phase changes were restricted
to {0,2n], then symmetry was not achieved, but very few phase changes were
required in this case, It was also noted that failed elements were
readily catered for in this type of approach.

The work carried out so far still requires further theoretical development
and numerical testing, before we can guarantee the full efficacy of the
techniques discussed., However, the numerical results produced have been
consistently good, and so we see considerable nromise in the ideas
introduced.
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7 APPENDICES

7.1 Appendix I
If it is assumed that the phase percturbation will be small, soO that we can
use the linearized form of the weights given in equation (2.11}, then, for

)

symmetrical nulls at #u,, the constraints given by ejuation (2.2) are:

[ s 34

ane1¢neldnuk =0

and (r.1)

I~

3 - u,
ane‘i’ne ‘dnJK = 0.

n=1

Putting elfn = 1 « i¢,, equations (I.1) tecome,
P id u, _
-1y apé,e  nk = po(uk).
n=1
and (1.2)

N .
-i ¥ an¢ne"ldnuk = poly) .
n=1

Here po(uk) is the value of the unperturbed pattern at Uy - Clearly the
left hand sides of equations (I.2) are complex conjugates and due to the
odd symmetry of ¢n and dn the resulting equations are inconsistent.
Therefore it is not possible to gain a solution using the linearized form

for symmetric null placement.
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7.2 Appendix II

Given,

ther. th~ derivative is given by,

N
9t =27 cn|an|2sinon 3% | p=1,..
akp n=1 akp
~ N - - =1 )
Also, 3Cs o 1, &= %%n f:1' .é'
axp n=t 99, o D £=1,..P.

3C

and Sxs is given by eguations (2.21) and (2.22).

K M K
S ) Ao (dp)Vsinla (u -u )] + )

(II.1)

(11.2)

M

v N
¥ Ay (dp ) Veosld (up -u )]

k=1 v=0,2.. k=1 v=1,3..
tan'] step 2 step
¢ =
K M K M
23n|an| + ¥ ) Akv(dn)“cos[dn(uk-us)] D) Aeyoldp) Vsinldy (up-u
k=1 v=0,2.. k=1 v=1,3..
(11.3)
pPutting Yo = tan ¢, (I1.4)
then
30, - 4o, 3v, (11.5)
axp dy, axp
and 3, - cosz¢n. (11.6)
ayn
Denoting,

vy = 2ela | + 1 I Meo(@p)Veosla, (u~u )T = T 1 A, (d)Vsinld) (u-ug)]

K even v

k odd v

S
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and

tn = -1 1 A (dp)Vsiald (uemu) ] ¢ DL dy (dp) Yeosld, (umug) ],

&L

k even v k odd v
then
Vo - - v , - -
= = (Qn) sin[dn(uk-us)J + \:n)vccsLdn(uk—Js); ta
3, i vi
for even v, (II.T)
and
3y, - (4.)V G Y7 = (a4 Ve I £
= ‘mn cos[dn(uk US)J (un) sm[dn(ul.'< us)] -2
oA v v
P n n

for odd v (II.8)
Equations (II.7) and (II.8) together with (II.8) (Z.21), (2.22), (II.2)
and (II.1) give all the required derivatives for the objective functicn

and constraints.
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Appendix IIT Listing of Routine for Setting non-Octagon weights

to Zero.

SUBROUTINE WEIGHT(A, C, NELEM, NADD, NSOCT, MAXELT, POLY)

IN THIS ROUTINE THE WEIGHTS A AND C ARE SET ACCORDING TO

THE TYPE OF ARRAY, RECTANGULAR (R) OR OCTAGONAL (0).

NELEM IS TOTAL NUMBER OF ELEMENTS IN RECTANGULAR ARRAY.

NSOCT IS NUMBER OF ELEMENTS ALONG EDGE OF OCTAGONAL ARRAY.

NADD IS NUMBER OF ELEMENTS ADDED TO EACH SIDE OF OCTAGONAL
EDGE TO EMBED IT INTO RECTANGLE.

IMPLICIT DOUBLE PRECISION (A-H, P-Z)
CHARACTERXx1 POLY

DIMENSION A(MAXELT),C(MAXELT)
FIRST SET ALL WEIGHTS TO 1, FOR SINC PATTERN
DO 10 JELEM = 1, NELEM

C(JELEM) 1.0d0

A(JELEM) 1.0d0
10 CONTINUE

IF (LIT.EQ.’R’'.OR.LIT.EQ.'r') RETURN
NOW PLACE ZEROS FOR OCTAGONAL

DO 20 JELEM = 1, NADD
A(JELEM) = 0.0DO
A(NELEM-JELEM+1) = 0.0DO

20 CONTINUE

NSTART = NSOCT +NADD
NUMAD = NSOCT
NZERO = 2%xNADD -1

DO 25 INUM = 1, NADD
DO 23 JELEM = 1, NZERO
NTJ = NSTART + JELEM
A(NTJ) = 0.0DO
A(NELEM-NTJ+1) = 0.0DO
23 CONTINUE

NUMAD = NUMAD+2

NSTART = NTJ+NUMAD

NZERO = NZERO -2
25 CONTINUE

RETURN
END

y'N P PR — e ma oA R .
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Field Pattern for Rectangular Array; 13x13 elements

Field Pattern for Octagonal Array embedded in 13x13 rectangle
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Null placed at u=0.28, v=0.32

o

,

Fig. 9(b)

Perturbed—Quiescent pattern for Rectangular Array
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Null placed at u=0.28. v=0.32
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Fig. 10(b)

Perturbed ~Quiescent pattern for Octagonal Arroy




Sadoan B

Fig. 11(a)

Nulls placed at u=0.28,v=0.32 ond u=0.32,v=0.36
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Fig. 11(b)

Perturbed—Quiescent pattern for Rectanqular Array
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Fig. 12(a)

Mulls placed at u=0.28,v=0.32 and u=0.32.v=0.36
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Fig. 12(b)

Perturbed ~Quiescent pottern for Octagonal Array
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Fig. 13

Quiescent sinc pattern with 41 elements
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Fig. 14
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Quiescent 20 db Taylor pattern with 41 elements and n
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Fig. 15

6

Quiescent 30 db Taylor pattern with 41 elements and n
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Fig. 16 Constrained amplitude-only pattern.

Nulls at u=0.7,0.71,0.72,0.73
Quiescent pattern - sinc
z;= 1.000000000 (i=1,...,41) excep?
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Fig. 17 Constrained amplitude-only pattern.
Nulls at u=0.07,0.08

Quiescent pattern - sinc
£,=1.000000000 (i=1,...,41) except
rs=z3-=-0.61903885
Te=r36=-0.99823899
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Fig. 18

Constrained phase-only pattern. Nulls at u=0.07,0.08
Phase range [-IL,1I]
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Fig. 19

Constrained phase-only pattern. Nulls at u=0.4,0.525,
0.65,0.775,0.9. Phase range [-II,II]
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Fig. 20

Constrained phase-only pattern. Nulls at u=0.22,0.24,
0.26,0.28,0.3,0.32,0.34,0.36. Phase range [-II,I]
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Fig. 21

Constrained phase-only pattern. Nulls at u=0.22,0.24,
0.26,0.28. Phase range [-II,1]]
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Fig. 22

VO

Constrained phase-only pattern. Nulls at u=0.22,0.24,
0.26,0.28. Phase range [0,21]]
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Fig. 23(a)

[0.7,0.72]

Constrained phase-only pattern. Constraints over

u
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Fig. 23(b) Array element 4 failed
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Fig. 23(d) Array elements 4,11,21 failed

I

.
f

B -

=
>

<

I m—
T T ee—

s
T e
R et
<
- 4
<.
—
-
N,
N
=

oI
Pm——— ]

A‘

FERUUNR RTINS G0 VA WO U U o iSRG S TU SUF N S N0 SEUH N0 O S U0 0 W05 W00 GO 1 B

N ) -+ Lr ) [~
i | i

1 ! ! |

N

I I R
00 an (]

] ! ~—i

1

0 -8

1

0

By

B

e e M .



b

List of Tables

Table
l(a)
2(a)
2(b)
3

-1 O

[ 4]

10
1i(a)

11(b)

Results for null at u=0.43633

Results obtained for multiple nulls

Effect of close null locations

Coefficients and average perturbations for higher
order constraints

Results for rectangular array with one null
Results for octagonal array with one null
Results for rectangular array with two nulls
Results for octagonal array with two nulls
Effect of 2 near boresight constraints on 30 db
Taylor pattern. Phase range [-IL.II] (Fig. 18)
Effect of 5 widely spaced constraints on 30 db
Taylor pattern. Phase range [-II,II] (Fig. 19)
ttfect of 8 closely spaced constraints on 30 db
Taylor pattern. Phase range [-IL.IT] (Fig. 20)
Effect of 4 constraints on 30 db Taylor pattern
Phase range [-II.IT} (Fig. 21)

Effect of 4 constraints on 30 db Taylor pattern
Phase range {0,2]1] (Fig. 22)

Y



£ = SNOTLIVY3ILT 40 °ON
1T-02218L6°L = SNOYTLVIODIA LINTVHLSNOD 3JHL 40 WYON
20~GEB62ZS*6 = NOTLINNG 3ATL123rA0
“QNADd NOTLNTOS VWILAG - d40A%03 1TX3
0T-36L6L°0~ LYET*0 00+30000000°0 00+30006000°0 01-222.8L6L°0~ D3 T N
TYNaIS3Y LI0W ¥9v7 gNnoe ¥3ddn ONANG H3IXOT SNTIVA 2L¥LS NOJIN
6*666 00+320000°0 000°0007T 000°000T~ HLL90ET0 ¥4 T A
IYNaIS3Y LINW yav7 QNnOe ¥3ddn aNnoe 33M0T INTVA JLYLS 10dv/
S = SNOTIVNTIVAS LINTVELSNGI 40 °*0ON
(3 s SNCTLVNIVYA2 NOTLIONNG 40 °0ON
£ = SNOTLVYILI HBOCVW d0 °*ON
0 = ivd] *3SVYHd dN LTX3
*(art L LN ) M1  CQ33N 3N W2e0U¥d 3IADS 01
, (a1l M (e IMT ST 0207A0Y¥d 3JIvdSNYOA
S1dwexa aaoge J0J andano YN a7 aT1qey
LGTZOE 'S TLIANG "vEE- ZN=-3908ZL " g9veT "0 LeICy 0
wead (9aa) (PRay uorlEaNilad S4UaTaT a0l (ped)
urew je sso yadag 1InN aseyd abedsaaAy weag r1ewiidp uwopj3adip [INN

€E91 0 = MO 3€ [[NWN a4 S3[nS3y el aiqel




BENEYG 95T~ ZEWNLT 0 S6£09 0
60039 'L | S5Z9¢L "C8Z~- Z0-3n9Lt 'y IVLET "O—~ 95568 0
CEOZE "5ZT— 915671 *0 L0190
TZE5Z Y| Ov198 "LTZ~ ZO=3NLOTY Y 1£69Z "0~ 3C5EG *D
YeT18L "ENT~ 7GEYT "0 LEG8ZI O
DZIYE'S5| GOTI0 "BBZ~ z0-3106%6 Y LZWZL "0O- 95568 °0
0Z18E "LOE~ g1Zuel ‘0 90Om9 *0
OWSEO "L | SNZNE "LEZ~ . Z0=-3£398ZT S |7 Y7e3T "0~ 96566 "0
weag (yaqa) {(peJd) uorjeOnjidad | 83UaTd144800 (ped)
urew ¢ sso-| yadag 11NN aseyd abwvaaany | weag tewigdp| uUojgaadIp ITINN
SU0T3e207 TINN aso1) 40 1083443 :QZ a81ge|
G689 "RLZ~ HneHvat Q- PA:1: R VAR
21589 ‘08~ I£E1T *O- GL589 "0
990L "8 | 65649 "CYT~ Z20-3a128Z °S 191271 “0~ 96565 0
$£685Z "£ZE- Se97171 °0- GL'3G9 'O
8597 °9 | E01EG "O0ZE~ Z20-395896 *Y OEvZT "0- 98568 0
I&EWT S| 6ZE98 ‘00~ Z0=3Mr310 °Y 068ZT *0- 95565 ‘0
weaq () |'(ped) uoiljeqnidad |83UB8TaT4480]7 (Ped)
uiew 32 ssoni yjdag Y inwN aseyd ebwaaay |[weag 1ewpadp | UOT3IBLFP TINN

STINN a1dy3(vid 0y paurviqqo s3InEay :eg a[qel

o and s

B L T S



- —— ——— —T—

€-9€G70°9 -

2-9QGT1'€E —
CEST'O Gegge'o - 4
2-99GB6T1 '€ —
g211°0 0o1pe 0 - 1
2-9v668°L Gegve o - 0
(ped) uotjeqniaagd adeaaay S3Ua1513J80D quleJa3suc) JO JdpJQ

N

T8UTB.I38U0) J48pJdo Jaydry Joj suoljyeqnjaad aDuJdaAy pue SjUarod1]Jao0)

'€ atqel



Table & Results for Rectangular Array with one Null.
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169 elements and

There are
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1 is at position

Constraint
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Initial value for constraint
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1 Beam Coefficients
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Table 7 Results for Octagconal Array with two Nulls.

v = o pipippaipep ~ e~

There are 129 elements and 2 contraints.

Constraint 1 is at position .28000
Constraint 2 is at position .32000

Initial value for constraint 1l is .10000
Initial value for constraint 2 is .10000

Required accuracy is .10000E-07
Optimal Beam Coefficients
-.59158
.37090
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.36000

Average pertubation = .80078E-01

.28000
-.25479E-16

.28000
= ~.46632E-15

DBA

.32000
~.118391E-14

.32000
.46453E-15

DBA

Yy

.3200¢C

.3200¢

.3600¢C

.3600¢
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Table 8 Effect of 2 near boresight constraints on 30 db

Taylor pattern. Phase range [-ILII] (Fig. 18)

3EAM REFZRENCE AT CENTRE OF 4RRAY
INITIAL PATTZAN TAYLIR WEIGHTED

NUMBER UF EQUAL S10cLOBES = b

DEPTH UF SIOELIBCS = 30.0

NUMBER DF ELIMeNTS = 41

NUMBER OF FITTING PCINTS = ol

QEPTH OF NULL = -90.

NULL INTERVAL = [2.073,0.0831)

SCALING FACTGR = 1.000

EOSIC(NULL DEPTA x SCALING FACTCR)= «592TE-J3

CTOLCABSILUTE)D = ,1000¢-25

FTOLCRELATIVZ) = ,1000£-06

CINSTRAINT NuMgiRr ViLUE THETA
1 ¢.9730 v 01
2 9.0810 «.59

INTERVAL OF PHa3: CHANGES = [=PL,PI1]

JBUECTIVE FUNCTIZN
NORM GF TrE CSHSTRAINT VICLATICNS

2.577«312+10
.2902130-138

NO. 0OF ITERATIINS = 13

CPU TIME (S2C3) = 195.333

UBJELTIveE FUNCTIAN = 2.4677

GAIN = -0.3339

NUMBER 0OF PH4AaS: PSRTURIATIONS = ol

AWERAGE PHASE PERTURIATION = J.30004030

I WCIGHTS PHAST CHANGES

1 0.252375373671 -0.658641075413¢3

2 0.27210455394334 -0.24957092713C3

3 0.2386257148517 -0.373585951513€E-C1

“ 0.3144631052305 0.1543050889T1

S 0.350456533175 0.350742503194

[} 0.3326397931568 0.513156764071

7 0.450536777328 0.636161908346

3 0.508726350485 0.6933818753130

9 0.56825615102 0.640510751069
10 0.626581310598 0.4%08832731382
11 0.682261¢13286 0.180113553¢53
12 0.734454271073 0.114369339513E-01
13 0.73#612668475 -0.6353992264330€-01
14 0.830863725439 -0.364991694058B3E-01
1> 0.8¢34921668153 -0.288175%51365€-02
16 0.9115009090¢8 0.2725553727742€-021
17 0.943565035459 0.501395197881¢-01
14 0.9483651987756 0.566341965526E-01
19 0.936207631334 0.442515323303€-C1
20 0.976588198007 0.263283195082E-01
21 1.000060000009 -0.178BL77234543E-15
22 0.9365841348007 -0.2«3283195082€6~-01
23 0.946207«31384 -0.442515323809€-01
26 0.958565138776 -0.546361995625E6-01
25 0.763565035459 -0.501396137381€-01
25 0.9115009690418 -0.295559727747€-01
217 0.873621658154 0.238175961063€-02
23 0.830863725839 0.369916940583€E-01
29 0.7344126438¢675 0.635999224337E~01
30 0.734354271079 -0.1160663395183E8-C1
31 0.632261419286 -0.180113553453
32 0.626541810598 ~-0.440383273382
33 0.5082%54615102 ~0.660510751069
34 0.5087264260485 -0.693381875830
3s 0.6450536777328 -0.6361619088446
36 0.33639793156438 -0.5131547564071
37 0.350354533175 -0.35074250319«
33 0.314481052303 -0.164304A0889T1
EE) 0.238425713517 0.3735859514153€-01
&y 0.272106959334 0.2495703273073
LY 0.256437337356171 0.468410754368%

ol e o e B

-~
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Table 9

——

Effect of 5 widely spaced constraints on 30 db
Taylor pattern. Phase range [-II,II} (Fig. 19)

BEAM REFZRENCE AT CENTRE OF 2aRRAY

INITIAL PATTERN TAYLIR WEIGHTED
NUMSER OF &QualL SIDELDBES

OEPTH UF SIDELJBES
NUMBER OF ELSMINTS

NUMBER OF FITTING POINTS

DEPTH OF NuULL
NULL INTERvVAL
SCALING FaCTOR

EPSICNULL DEPTH x SCALING

CTOLCABSQLYUTE)
FTALCRELATIVE)
CGNSTRAINT NUM3ER

cACTaR)

[
o

-90.
(2.<00,0.9011
1.0Q0
«§5927E-33
. 1000205
.10005-06

VAL UE THETA

W H B uwoa #

LY v

INTERVAL 07 PHASI CHANGES

EXLT EUQsVCF

OBJUECTIVE FUNCTION
NQRM QF THE CJINSTRAINT VIOULATIONS =
NG. QF ITERATIINS = 38
CPyY TIME (5ECSS
Q9JECTIVE FUNCTION
GAIN
NUMBER CF pPHASZ
AYVERAGE PHASE PERTURIATIIN
I WEIGHTS
1 0.254375373671
2 0.272105559334
3 0.288425718517
o 0.314-81052305
H 0.350350533176
6 0.396397931463
1 Q.4505346777324
8 Q-.508724350685
k] 0.50825+615102
iq 0.626581810599
| Y 0.682261419286
12 0.733d54271019
13 Q.T7844126638473
le 0.6)0463725337
15 0.8736216568158
16 0.911500969904
17 0.94335565035457
13 0.908566138775
19 0.93620743138«
24 0.9963583134007
21 1.0009000090000
22 0.995588138007
23 0.93620T431434
2« 0.948565138775
25 0.94356303%459
2% 0-.911400929043
_27 0.873621659153
23 0.2303613725839
29 0.74441246458675
3o 0.73464954271079
31 0.632261419285%
32 0.6263581810578
33 0.558254615102
3a 0.50872¢300485
39 0.450536777328%
36 0.3968397931463
37 0.350855533176
38 0.3164810521305
1 0.238024718517
40 0.27210655983%
.1 0.264375373671

0.4000 23.58

0.5230 31.67

0.5500 &.34

0.17530 $9.31

0.900Q90 ba.16
= (-P[,PL]

- JPTIMAL SQLUTIIN FJUND.

PERTURIATIAONS

= £2132179-21
1.20564903~-33

$25.-909Q

[ T I TR}
|
o
.
o]
W]
N
@

0.20306000

PHASE CHANGES
0.692320413065€E-01
0.202395009211

-0.875112634187E-01
-0.645607T02492852-01
-0.156971427073
0.209489964531
-0.333589691507E-01
~0.9003326709938~01
0.336021793505€6-01
-0.677896230673E~-C1
0.122891352484@
-0.888541796306E-01
0.352378398%64E-01
-0.705272236364E-01
“0.3771360386077E-02
0.1%3176434434
-0.1371735778%62
0.233295%922052E-01L
-0.411387637492E-01
0.122325135364
0.326101309204E~19
“0.1%242513524)
0.6411383629645%28-~01
=0.253295522546E~01
Q.137733778913
=-0.143173634333
0.37713591043SE-02
0.705272234203€E-01
~0.362178398627€-01
0.8498561794508E-01
~0.1223913684740
0.677896293406E-01
~0.336021774185E~01
0.9003326897325-~01
0.383389401307€~01
~0.,209489944640
0.1563T71427991
0.466070249417€E~01
0.875112684553€E~01
~0.202495007367
~0.632330409063€E-01
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Table 10

T

Effect of 8 closely spaced constraints on 3¢ db

Taylor pattern. Phase range [-II,II] (Fig. 20)

BEAM REFEIENCZ AT (INTRE CF ARRAY
INITIAL PATTEIN TAYLCR WE1GATED

NUM3ER JF EJual SIOSLIBES = 6
CEPTH OF 5I3ELO3ES = 30.0
NUMBER QF ELZMENTS = sl
NUMBER OF FLITTING PIINTS = a1
DZPTH OF NULL = -30.
NULL INTERVAL 2 (0.220,0-3601
SCALING FALTSR = 1.900
EPSICNULL DEPTH x SCALING FACTOR): .5927%-03
CTOLCABSOLUTE) = .1000€E-095
FTOLCRELATIVE) = L1000€-02
CONSTRALINT NUMBER vaLye THITA
l 1 0.2200 12.71
2 0.2600 13.89
b 0.2500 15.07
4 4 0.2900 16.26
5 0.2000 17.45
p 6 0.3200 18.65
7 0.3400 19.33
) 8 C.350n 21.192
INTZRVYAL OF PHASE CHANGES = [-Pl,PI1]
EXIT E£04VUF - CUKRENT PJINT CANNCT 8EF IMPROVED UPIN.
C8JECTIVE FUNCTICH = 8.93559.0-01
NORM OF THE CINSTRAINT VIOULATICHS =  1.5324370-15
NO. GF ITZRATIONS = b
4 C2U TIME (SE2C3) = 337.71i0
} G3JSCTIVE FUNCTION = .3935%
4 GAIN = -0.2:281
1 NUM3ER OF PHASE PZRATUREATIONS = P

AVERAGE

PHASE PIRTURSATION

WEIGHTS

0.02C7000¢

1 PHASE CHANGZS

] 1 0.264375373671 1.71510277802
2 0.2721046553834 0.1719565150072-01

3 .288426713517 0.364202494836

“ 0.31+481052305 0.2414335794%56

5 0.353856583176 -0.1432346344925

6 0.396897931668 -0.103902311326
) 7 0.650536777328 0.18631526567625-01
) 8 0.5048726360485 0.3694266774275-01
{ 9 0.568254615102 0.1366436832605~01
10 0.626531310538 -0.6111891412253€-01
11 0.662261%19286 -0.,111754387377€-01
12 0.734856271079 ).436653313237<-01
13 0.786412563475 0.490156101251E~01
t le 0.830863725835 -0.466135535w128-02
15° 0.973621668158 ~0.439665629398:-01
L 16 0.911600769044 0.16011874881nE-02
A 17 0.943565035459 0.3296535531325-01
r 18 0.763566198776 D.372023211178€-02
r 19 0.386207431884 ~0.2139536766382-01
{ 20 0.996538198007 -0.233405317080E-01
21 1.000000000000 ~U.152631376268E-10
y 22 0.976538198007 0.23796405313115&-01
§ 23 0.986207+31886 0.2139536758672-01
| 26 0.963546619377s -0.372023197¢282-02
25 0.3435465035459 ~0.3296535557525-01
26 0.911600969048 ~0.16011874373&5-02
27 0.873621463158 0.4336656295126-01
28 0.930863725839 0.4641355345308-02
29 0.786412668475 ~0.49015610190E-01
30 0.734834271077% ~0.6366583137965-01
31 0.582251619286 d.1117549864153-01
32 0.625581310594 U.511131412467E-01
! 33 0.564254515102 ~0.13464B6882593-01
34 0.503726360635 ~0.8894266774005-01
35 0.450536777328 ~0.186315266773:-01

35 0.396897931668 0.103902311332

37 0.3508563583176 0.145234344823

8 U.3164313523905 ~0.2614334795]15

33 0.238426719517 ~0.365202694843
40 N.272106559834 ~0.171956515138E-01

0l 0.26+375373671 ~1.71510273011
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Effect of 4 constraints on 30 db Taylor pattern
Phase range [-ILII] (Fig. 21)

Table 11(a)

3EAM REFIRENCE AT CENTRE QF aRRaAY
INITIAL PATTCERN TAYLOR WCZIGHTED

TTTTRTTTYT Y e ww T T v e o ¢

NUMBER OF EQuatL SICELOSES = &
ODEPTH OF SIDELIBIS = 30.0
NUHMBCR OF ELIMENTS = &1
NUMEER OF FITTING POINTS = el
NUMBER OF CONSTRAINTS = 3
QEPTH QF NULL = =-90.
NULL INTERvaL = £0.227,0.2801
SCALING FACTUR . = 1.000
EPSICNULL DEPTH x SCALING FACTOR)= ,5927:2-33
l CTSLCABSULUTE) = ,1000:2-95
FTOL(RELATIVE) = ,.10002-06 B
{ CONSTRAINT NUMZER VALUE TRETA
1 0.2200 12.71
2 3.2600 13.39
3 0.2600 15.927
) “ 0.2800 16.26
INTERYAL OF PHASZ CHANGES = (-P[,PIL2

e T e T T e = 3

-y

P -

0BJECTIVE FUNCTION

NORM QF TwuZ

NOC .

WO NEWnE N

o0 | SN VR I WP

QF ITERATIONS = 350
CPU TIME (3ECS)
O8JECTIVE FUNCTISON
GAIN

NUMBZR OF PHAS
AVERAGE PwASE

Wz IGHTS
0.254375373571
0.27210655933«
0.2484257185117
0.314-41052305
0.3504d5%533175
0.396397931668
0.450536777323
0.508724350445
0.568254615102
0.626581510598
0.632261419286
0.734356271079
0.786412658475
0.830363725333
0.873521663153
0.911500969044
0.964335035035459
0.963565178776
0.956207431384
0.9965813198007
1.000000020009
0.996583134007
0.93620743148«
0.908566194775
0.943365035453%
0.9116099590¢64
0.873621558154
0.830863725339
0.736412663675
0.7344355271079
0.6322614192856
0.626581310599
D0.5082544615102
0.508724350485
0.450536777323
0.336397931063
0.350855533174
0.314481052305
0.288426718517
0.272106559834
0.264373373671

CONSTIAINT YIQULATIANS

= 5.302943C-21
= 3.4435330-16

1572.720

.53803
-3.1536
41

TR TR TR T 1Y

PHaSZ CHANGES
1.42561832443
0.1774053344853
0.544611062385€-01
0.3523689350719€-0
-0.217133338953€E-01
0.160085375483E-02
-0.377313654A08E-01
=0.332342720221€E~01
0.297468«3K0005€-01
0.130230754370€-02
-0.70893329B473E-02
~0.344565083263¢5-03
-0.102597228359€E-01
0.218613030435E~02
0.364631517Q757€-02
~0.643866915221E-02
0.946325631744€-03
0.250026106192%8-02
=0.62863364Q197E-02
0.257385602219E-02
0.294371351772€6~14
~0.257985612220€-02
0.428633640157E-02
-0.250025106192€6-02
=0.946325631740€-03
0.63346%915221€~02
=0.354715170753€-02
~0.2084190306434E-02
0.1026972281353€-01
0.3464565083265€-013
0.703933298475E-02
-0.140280754370£-02
-0.207584340005€-01
0.332342720221E-01
0.3773134546403E-01
~0.150085375473€-02
0.217133388952€-01
~0.352380350720€-01
~0.5446411063387€-01
-0.177305834486
~1.42561832443

0.000040000




Table 11(b)

..M

Effect of 4 constraints on 30 db Taylor pattern
Phase range [0,2]I] (Fig. 22)

4EAM REFEZRENCE aT CENTRE COF aRlar

INITIAL PATTERN TuYLJR WEIGHTED

NUMBER OF EQUAL SIUELO3ES
Q0gPTH OF SIDELIBEIS

NUMBER OF ELIMENTS

NUMBER OF FITTING POINTS
NUMBER OF CONSTRAINTS
QEPTH OF NullL

NULL INTERVAL

SCALING FACT Ok

EPSI(NULL DEPTH x SCALING FACTJIR)

CTIL(ABSJLUTZ)

FTILCRELATIVE)

CONSTRAINT NUM3ER
1

2
3
INTERVAL QOF PHAS

m

CHANGES

CHJECTIVE FUNCTION

NORM JF THE CONSTRAINT vIGLATIONS

NO. CF ITERATIGONS = 23
CPU TIME (SECS)
OaJECTIVE FUNCTION

GAIN

NUMBER OF PHASEI PERTURBATIING
AVIRALGE PHASE PERTURIATION

I WEIGHTS

1 0.245«375373671

2 U.272104533334

3 0.233425718517

- 0.314431052305

5 0.350456533175
5 0.39633979315683
7 0.450536777323
8 0.508724360485

9 0.568254615102
10 0.626581810598
11 0.632261413286
12 0.734356271079
13 0.734612608675
14 0.830363725439
15 0.873421668153
15 0.911500967043
i7 0.9435650354539
13 0.963566198775
19 0.98620743138¢
20 0.996583138007
21 1.000000000000
22 0.99656881398007
23 0.936207431386
P 0.968566173776
253 0.9+3565035457
26 0.911600969043
27 0.873621568158
23 0.8303637253139
23 0.736412658475
30 0.7364354271073
31 0.63226161928%
32 0.626531810598
33 0.5H58256615102
34 0.508724350485
35 0.450536777328
34 0.3768979131668
a7 0.3503546583176
33 0.3164431032305
33 0.288426718517
0 0.27210653933%
el 0.26437153736171

LU L U T T TR T | N T B PR 1)
]
L
o
.

vague THETH
3.2200 12.71
0.2600 13.39
2.2600 15.17
- 2800 15.26

1.3+4370692+30
1.4132320-03

non

73.1330
1.349
~0.%411
13
d.34301072

PHAST CHANGES
3.16311635533
0.6475039532072
1.563259+5554
0.642C31144385%1»
0.00CJ0Q00C000VE+CT
0.00000u00000QE~QO
0.0J0000000000€E+00
0.00090000000Q00E+00
0.000000000000E+00
0.000000000J0QE+0C0
0.00C300000009E+00
0.000000000000E+00
0.000000000000€+00
06.191025312272
0.928570997521E-01
0.000000000000E+00
0.000000000000E+Q0C
0.000000000000E+00
0.000000000000QE+00
0.000000000000€E+00
0.000000000000E+00
0.000000000000E+00
0.000700000003E+00
0.000000000000E+00
0.0009000N000C0E+Q0D
0.1443106356353
0.5695933679%€-01
0.00000J000000E+ND
0.000000000000E+00
0.000000000000€+09
0.000000000000E+00
0.000000000000E+00
0.0N0000000000E+00
0.133018278172
0.000000000000€+00
0.00N0000000000E+QJ
0.000000000700E+00Q
0.000300000000E+00
2.01154099193
0.000000000000E+0"
0.0u0U00000000E+QQ




